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The Discrete Fourier Transform of Symmetric Sequences 
 

Symmetric sequences arise often in digital signal processing.  Examples include symmetric pulses, 

window functions, and the coefficients of most finite-impulse response (FIR) filters, not to mention the 

cosine function.  Examining symmetric sequences can give us some insights into the Discrete Fourier 

Transform (DFT).  An even-symmetric sequence is centered at n = 0 and xeven(n) = xeven(-n).  The DFT of 

xeven(n) is real.  Most often, signals we encounter start at n = 0, so they are not strictly speaking even-

symmetric.  We’ll look at the relationship between the DFT’s of such sequences and those of true even-

symmetric sequences.  Note:  for basics of using the DFT, see my last post [1]. 

 

Let x(n) be a causal sequence as shown in Figure 1 (top).  Let xeven(n) be an even-symmetric sequence 

defined over n = -8:7, as shown in Figure 1 (bottom).  This sequence is centered at n = 0, and the first 

non-zero value occurs at n = -3.  The sequence is also referred to as a non-causal sequence, because it 

begins before n = 0.  Mathematically, the most straightforward way to find the Discrete Fourier 

Transform (DFT) of this sequence would be to evaluate the DFT formula (see Appendix) over n = -8: 7.  

We would then find that the spectrum Xeven(k) is real.  However, in this article, we’ll compute the DFT 

using the standard time index range of n= 0: N-1, which allows us to use the Matlab Fast Fourier 

Transform (FFT) function.  We’ll find Xeven(k) using two different methods. 

 

Method 1:  Time Shift 

 

Given the causal sequence x(n), we can use the time-shifting property of the DFT to find the DFT of 

xeven(n).  For x(n) with DFT X(k), the time-shifting property is given by (see Appendix) : 

 

𝑥(𝑛 − 𝑁0)
𝐷𝐹𝑇
↔  𝑒−𝑗2𝜋𝑁0𝑘 𝑁⁄ 𝑋(𝑘)            (1𝑎) 

 

Where X(k) is the DFT of x(n) and N0 is delay in samples.  We define normalized radian frequency 

ω = 2πf/fs, where fs is sample frequency in Hz and f = kfs/N.  We can then also write: 

 

𝑥(𝑛 − 𝑁0)
𝐷𝐹𝑇
↔  𝑒−𝑗𝜔𝑁0𝑋(𝜔)            (1𝑏) 

 

Consider x(n) and xeven(n) shown in Figure 1.  xeven(n) is equal to x(n) advanced in time by N0 = 3 samples, 

so: 

 

𝑥𝑒𝑣𝑒𝑛(𝑛) = 𝑥(𝑛 + 𝑁0)                (2) 

 

Since we are advancing x(n) by N0 samples, Equation 1b becomes: 

 

𝑥𝑒𝑣𝑒𝑛(𝑛) = 𝑥(𝑛 + 𝑁0) 
𝐷𝐹𝑇
↔  𝑒𝑗𝜔𝑁0𝑋(𝜔)          (3)    
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Thus, the DFT of xeven(n) is: 

 

𝑋𝑒𝑣𝑒𝑛(𝜔) = 𝑒
𝑗𝜔𝑁0𝑋(𝜔)         (4)       

 

We can also write the converse of Equation 4: 

 

𝑋(𝜔) = 𝑒−𝑗𝜔𝑁0  𝑋𝑒𝑣𝑒𝑛(𝜔)        (5)       

 

 

This equation shows that the DFT of a sequence x(n) having even symmetry with respect to its center 

sample is a real spectrum Xeven(ω) multiplied by a linear phase shift.  An example of this is the frequency 

response of a symmetric FIR filter with an odd number of taps.  Given an even-symmetric filter heven(n) 

with real frequency response Heven(ω), the causal filter’s frequency response is linear-phase: 

 

𝐻(𝜔) = 𝑒−𝑗𝜔𝑁0  𝐻𝑒𝑣𝑒𝑛(𝜔)        (6)       

 

where N0 = (number of taps – 1)/2.  A symmetric FIR with an even number of taps also has linear phase 

[2]. 

 

 
Figure 1.  Top:  Causal sequence x(n).   Bottom:  Even-symmetric sequence xeven(n).   
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Method 1 Example 

 

In this example, we use Equation 4 to find the DFT of xeven(n) shown in Figure 1 (bottom), given the 

causal sequence x(n) of Figure 1 (top): 

 x(n) = [2 8 12 13 12 8 2 0 0 0 0 0 0 0 0 0]/57.   

 

The Matlab code is listed below.  Note that the  .* operator performs element-by-element multiplication 

of two vectors. 

 

fs= 1;             % Hz sample frequency 

N= 16;             % samples length of x 

x= [2 8 12 13 12 8 2 0 0 0 0 0 0 0 0 0]/57;  % causal sequence 

% compute DFT of causal x 

X= fft(x,N);     % DFT 

k= 0:N-1;           % frequency index 

f= k*fs/N;          % Hz  frequency 

  

% compute DFT of x_even using time shift property of DFT 

w= 2*pi*f/fs;            % rad normalized radian frequency 

No = 3;                  % samples  time advance 

Xeven= exp(j*w*No).*X;   % Equation 4 

 

The DFT of x(n) is plotted in Figure 2; we see that it is complex.  The DFT of xeven(n) is plotted in Figure 3; 

as expected, it is real. 

 
Figure 2.  DFT of causal sequence x(n).  Top:  real part.  Bottom:  imaginary part. 
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Figure 3.  DFT of xeven(n).  Top:  real part.  Bottom:  imaginary part. 

 

 

Method 2:  Periodic Extension in n 

 

Figure 1 (bottom) plots xeven(n), which has finite length N = 16 samples.  Its spectrum, which we 

computed using the DFT, is of course discrete, as shown in Figure 3.  You may recall that the Fourier 

Transform of a periodic signal is discrete.  The converse is also true:  the inverse Fourier Transform of a 

discrete spectrum is periodic.  So, mathematically, our finite-length xeven(n) can be viewed as periodic, 

with each period replicating its N samples [3].  This is shown in Figure 4, where the top plot shows 

xeven(n), and the center plot shows xeven(n) extended to be periodic.   
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Figure 4.  Top:  sequence xeven(n).  Middle:  periodic extension xp(n).  Bottom:  u(n) = xp(0:N-1) . 

 

 

For our periodic sequence xp(n) we can state: 

 

𝑥𝑝(𝑛 + 𝑁) = 𝑥𝑝(𝑛)         (7) 

 

Thus,  

𝑥𝑝(𝑁 − 1) = 𝑥𝑝(−1)                       

𝑥𝑝(𝑁 − 2) = 𝑥𝑝(−2)   𝑒𝑡𝑐.     (8) 

 

If we define u(n)= xp(0:N-1), then u(n) is as shown in Figure 4 (bottom).  Conveniently, the time index n of 

u(n) matches that used in the DFT formula (see Appendix).  Note that u(n) has even symmetry with 

respect to N/2 = 8 (not including the sample at N = 0).  The DFT of u(n) is real, as we’ll show in the 

following example. 
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Method 2 Example 

 

Here is the Matlab code to find u(n) given xeven(n), and compute its DFT. 

 

fs= 1;             % Hz sample frequency 

N= 16;             % samples  length of x_even 

x_even= [0 0 0 0 0 2 8 12 13 12 8 2 0 0 0 0]/57; 

  

xp= [x_even x_even];   % periodic extension of x_even (2 periods) 

u= xp(9:24);           % u = xp over n= 0:N-1 

  

U= fft(u,N);        % DFT 

k= 0:N-1;           % frequency index 

f= k*fs/N;          % Hz  frequency  

 

x_even, xp, and u are plotted in Figure 4.  The DFT of u(n) is real and identical to the DFT we computed in 

Example 1; see Figure 3. 

 

From Equation 8, xp(N/2: N-1) = xp(-N/2: -1).  That is, the samples of xp from N/2: N-1 match the 

negative-time portion of xp.  So, we can view the range n = N/2: N-1 as negative time, and any sequence 

with non-zero samples in this range is non-causal.  Common examples of non-causal sequences are any 

periodic sequence, such as a cosine. 

 

If we form the bottom plot of u(n) in Figure 4 into a circle, we get the three-dimensional plot of Figure 5.  

The symmetry with respect to n= 0 or n = N/2 is apparent.  The plot shows the equivalence of xeven(n) 

and u(n).  The plot can be viewed as periodic, with each period represented by one trip around the 

circle.   

 

Finally, a word about odd-symmetric sequences.  An odd-symmetric sequence is centered at n = 0 and  

xodd(n) = -xodd(-n).  The DFT of such a sequence is pure imaginary.  Examples of odd sequences are the 

coefficients of FIR differentiators [4] and Hilbert transformers. 
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Figure 5.  Circular plot of u(n), N = 16. 
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Appendix:  DFT Formula and the DFT Time-shift Property 

 

For a discrete-time sequence x(n), the DFT is defined as: 

 

𝑋(𝑘) = ∑ x(n)e−j2πkn 𝑁⁄        

𝑁−1

𝑛=0

  (𝐴 − 1) 

where 

X(k) = discrete frequency spectrum of time sequence x(n) 

N = number of samples of x(n) and X(k) 

n  = 0: N-1 = time index 

k = 0: N-1 = frequency index 

 

Equation 1 calculates a single spectral component or frequency sample X(k).  To find the whole spectrum 

over k = 0 to N-1, Equation 1 must be evaluated N times.   

 

We see that, by definition, the DFT applies to a finite-length sequence of N samples.  Equation 1 does 

not contain variables for time and frequency, but uses time and frequency indices n and k instead.  The 

frequency index is sometimes referred to as “frequency bins.”  For sample time of Ts, the discrete time 

variable is given by: 

 

t = nTs                                        (A-2) 

 

For sample frequency fs = 1/Ts, the discrete frequency variable is given by: 

 

  f = k*fs/N                                      (A-3) 

 

While x(n) is normally a real sequence, X(k) is in general complex.  For real x(n), the real part of X(k) is 

even with respect to f = fs/2, and the imaginary part is odd.   

 

Time-Shift Property 

 

Figure A-1 (top) shows a sequence x(n).  If we delay x(n) by N0 samples, we get the sequence: 

 

𝑦(𝑛) = 𝑥(𝑛 − 𝑁0)                (𝐴 − 4) 

 

This sequence is shown in the bottom plot for N0 = 2.  Using Equation A-1, we can write the DFT of y(n): 
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𝑌(𝑘) = ∑ x(n − 𝑁0)e
−j2πkn 𝑁⁄        

𝑁0+𝑁−1

𝑛=𝑁0

  (𝐴 − 5) 

 

Now substitute m = n – N0 into this equation: 

 

𝑌(𝑘) = ∑ x(m)e−j2πk(m+𝑁0) 𝑁⁄        

𝑁−1

𝑚=0

  (𝐴 − 6) 

or, 

 

𝑌(𝑘) = 𝑒−𝑗2𝜋𝑁0𝑘/𝑁 ∑ x(m)e−j2πkm 𝑁⁄        

𝑁−1

𝑚=0

  (𝐴 − 6) 

Comparing this to Equation A-1, we see that the summation is just X(k), so we have: 

 

 

𝑌(𝑘) = 𝑒−𝑗2𝜋𝑁0𝑘 𝑁⁄ 𝑋(𝑘)                 (𝐴 − 7) 

 

Thus, 

 

𝑥(𝑛 − 𝑁0)
𝐷𝐹𝑇
↔  𝑒−𝑗2𝜋𝑁0𝑘 𝑁⁄ 𝑋(𝑘)            (𝐴 − 8) 

 

 
Figure A-1.  Top:  Sequence x(n).  Bottom:  Shifted sequence y(n) = x(n – N0) for N0 = 2. 
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